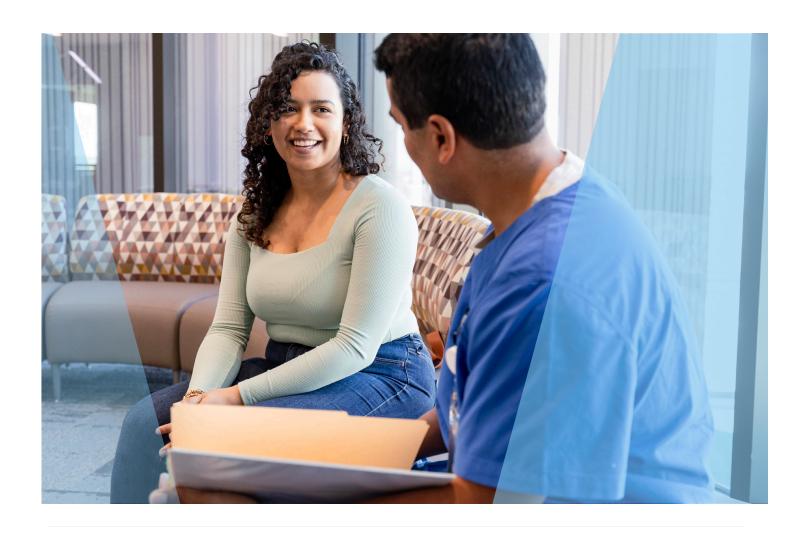


Rethinking the role of genetic testing in women's health programs

Turning genetic insights into levers for coordinated care, higher utilization, and measurable women's health impact.

Transforming women's lives with precision healthcare


By integrating genetic testing more holistically into their women's health programs and practices, healthcare leaders can have a transformative effect on the populations their system serves.

With the right integration strategy, genetic screening can become a proactive tool for early detection, personalized prevention, and equitable care planning across a broader population of women. Despite fragmented workflows, budget limitations, and workforce capacity shortages at many systems, significant progress is possible by taking a programmatic approach to genetic testing in women's health programs.

This eBook makes the case for the powerful role genetic testing can play in women's health programs and how the right genetic testing provider can accelerate your progress.

Browse by section:

- The possibilities of integrated genetic testing workflows in women's health
- Missed opportunities in women's genetic cancer risk testing
- Bringing a programmatic approach to women's genetic testing to life
- Learn more about establishing a hereditary cancer risk assessment program in your practice

The possibilities of integrated genetic testing workflows in women's health

First, the good news. The hereditary genetic markers of many high-risk cancers affecting women are now understood better than ever. In addition, advances in screening and testing solutions make it possible to determine women's cancer risk earlier, which improves outcomes and reduces costs.

That said, a great deal of variation remains in the degree to which health systems deliver on the transformative potential of genetic screening and testing to the women in their care.

What's achievable

- Early identification of women at high risk for hereditary cancers
- Increased utilization with monitoring, prevention, and surveillance strategies
- Reduced affected patient treatment costs through early intervention
- Better patient experiences delivered within the circle of care and closer to home

The reality

- Fragmented testing processes across specialties
- Inconsistent approaches to risk assessment
- Barriers to accessing genetic counseling
- Multiple, disconnected care experiences for patients

For some health systems, the missing ingredient isn't test supply or highly-skilled genetic counselors. It's the lack of a programmatic approach designed to ensure that the highest percentage of women in the population the health system serves are screened, tested, and offered appropriate care management plans.

The evidence is abundant that this sort of approach can drive meaningful change in outcomes for women and family members. Potential benefits include:

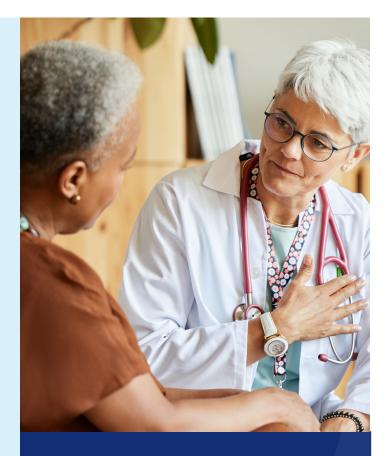
Lower incidence of late-stage breast cancer diagnosis1

Patient, insurer, and systems cost reductions3

Mortality reductions²

Greater parity in utilization4

To illustrate what's possible, here is the story of one health system that is reaping the benefits of taking a programmatic approach to genetic testing in women's health.


Adventist Health's AHEAD program counters hereditary cancer

The Adventist Health Early All-Around Detection (AHEAD) program started with Dr. Candace Westgate, OB/GYN, former Medical Director of Women and Infant Services and Adventist Health St. Helena, in Napa County, California. Because her practice included obstetrical care, gynecological care and surgical intervention, preventive care was important to Dr. Westgate. By implementing hereditary cancer screening, counseling, genetic testing, and riskprevention management — all at the point of care - she and her colleagues elevated patient care and improved population health.

Adventist Health recognized the potential value of the AHEAD program and piloted an approach that moved toward personalized risk assessment and a management plan that included genetic counseling and testing. The goal: help patients stay ahead of cancer.

Dr. Westgate's genetic testing provider, Myriad Genetics, also maintained an in-hospital presence that helped smooth implementation with repeatable workflows, consistent messaging, and structured training sessions across the system's hospitals and clinics.

The AHEAD program has delivered 4.9/5 patient satisfaction scores, with 95% of patients paying nothing out of pocket for their genetic testing. So far, AHEAD has expanded to 58 Adventist Health locations across multiple specialties and geographic regions. And AHEAD's circle of care model is helping to structure patient referrals and comprehensive care to deliver better outcomes.

"Moving away from a one-sizefits-all approach to cancer risk assessment and management improves quality of care and patient satisfaction."

Dr. Candace Westgate, OB/GYN, former Medical Director of Women and Infant Services, Adventist Health St. Helena

Missed opportunities in women's genetic cancer risk testing

Although no health system intentionally sets out to overlook cancer risk in women, current workflows create barriers that hamper better preventative care. The impact extends across outcomes, operations, and revenue.

Clinical impact: Missed opportunities for prevention

Cross-specialty alignment challenges are rooted in the lack of a single, shared risk assessment protocol across primary care, OB/GYN, imaging, and oncology care practices. Add varying approaches to referrals, non-standardized post-test follow-up processes, technology and workflow disconnects such as manual or multiple processes for tracking high-risk patients across care episodes, and limited integration between risk assessment tools and ordering systems, and you have a perfect formula for the health system creating an incomplete picture of each woman in their catchment area. Without a holistic view, the system and the patient are more likely to miss risk factors, delay or skip follow-up, or create care disparities among higher-risk populations.

Operational impact: Resource strains and inefficiencies

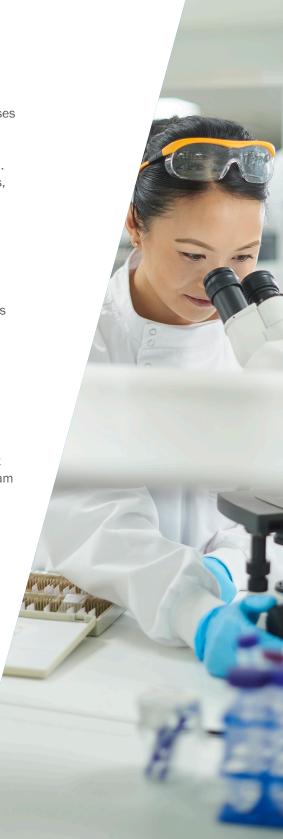
If genetic testing for women isn't integrated into a logical workflow, genetic counselors may experience bottlenecks due to uneven and unpredictable demand. Additionally, delayed referrals for genetic counseling can decrease patient follow-through and compliance.

Lack of a 360-degree view of each woman also may generate overlapping intake processes, multiple appointments to deliver on a care pathway, and additional scheduling and follow-up coordination. Given women's busy schedules today, these frustrations may cause them to abandon the diagnostic journey altogether.

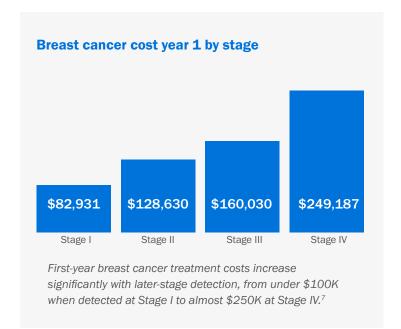
Furthermore, the lack of patient screening and education tools can negatively impact a patient's decision to consent to genetic testing. A recent study⁵ shows how a program that includes an online patient screening tool and virtual patient education can significantly improve hereditary cancer genetic testing completion rate.

Additionally, in an observational study of four clinical workflows, uptake of genetic testing across sites varied significantly:

of women tested based on referral


based on point-ofcare scheduling

based on point-ofcare counseling or telegenetics

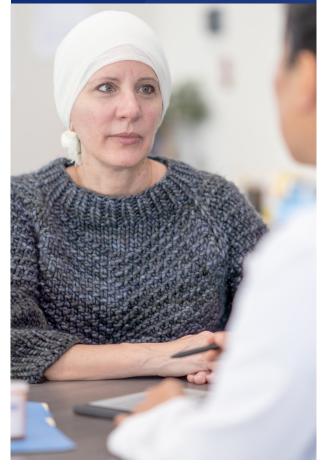

based on point-ofcare testing.⁶

Financial impact: the elevated costs of delayed intervention

The later a woman is diagnosed with cancer, the more limited the treatment options and the higher the cost of those treatments.

Early identification isn't just clinically beneficial; it's fiscally responsible. Strategic investment in screening and prevention helps protect both patient well-being and system sustainability. It has been well documented that patients who are diagnosed at a later stage of cancer have a higher cost of care than those who are diagnosed early. In some cases, the cost can be up to seven times more.8

The out-of-pocket patient financial burden increases in laterstage diagnosis,9 even as adherence to follow-up proportionately decreases. 10 Adverse financial effects of cancer treatment can create "financial toxicity" for the patient that may be worsened by treatment-related productivity loss and negative employment impacts.11


Lifespan impact: early detection matters

The later breast cancer is diagnosed, the lower the 5-year survival rate. 12

Stage 0-1 (Localized) → **99-100**%

Stage 2-3 (Regional) \longrightarrow 87%

Stage 4 (Distant) —

The programmatic approach: From testing to integration

The core elements of an integrated genetic testing program are easy to enumerate but require full care team coordination and integrated workflows to achieve. They include:

Standardized protocols and risk assessment

This includes defining a common assessment algorithm based on consensus guidelines, consistent pre-test education procedures, and uniform EHR documentation of the entire genetic testing process.

Decision-support tools for providers

Helpful tools for a women's health practice could include a hereditary risk calculator, a simplified test selection routine with insurance coverage estimates, using tests with the highest predictive accuracy and lowest VUS rates, test result guides for health care provider and patient understanding, and recommended specialty-specific action steps.

Population health strategies for equitable access

Educational materials for women, including content tailored to each stage of the screening, testing, and diagnosis stages of the journey, should be available in multiple languages depending on catchment area. Other strategies could include community outreach programs, virtual pre-appointment and point-of-care screening, and access to board-certified genetic counselors.

Clinical collaboration models

Geneticists and treatment specialists should share treatment protocols and best practices for women in their care to build and maintain genetic literacy. In addition, patient cases should be discussed at multidisciplinary case conferences.

Other key levers in programmatic testing programs include:

Strategically expanding access to testing and care

In many health systems, women receive inconsistent risk assessment. Improved outcomes are a function of tiered testing recommendations based on risk category and streamlined pathways for highest-risk patients.

Evolving current care models

Many experts and public health organizations believe the current coverage landscape for hereditary cancer testing among women should expand—particularly to reach more women at risk who remain undiagnosed or untreated. Genetic counselors, oncologists, PCPs and care navigators should be brought together in teams with a unified workflow.

Leveraging technology-driven solutions

Patients might complete a digital risk assessment prior to their appointment. Health systems can make point-ofcare genetic education available to normalize testing and increase patient participation while promoting sample acquisition for testing during wellness appointments. Systems can use portals and automated follow-up to guide patients through testing and results management but also offer telehealth options with genetic counselors to reduce access barriers. And partner networks can look for opportunities to expand specialized testing capabilities.

Embedding testing into clinical decision pathways

Health systems should work harder to embed genetic services into routine women's health, especially through the focal point of OB/GYNs. OB/GYNs can be part of genetic screening workflows that are integrated with well-woman and gynecology concern visits. Primary care, meanwhile, offers a great opportunity for genetic testing during annual wellness visits as part of overall risk assessment via vehicles such as age-based screening prompts. In oncology, germline testing integrated with treatment planning protocols will ensure that treatment decisions are personalized, and risk management is done more proactively. Testing may be done via red flag care protocols for relatives who may carry certain mutations.

Finally, health systems can consider these steps to more fully embed testing into clinical decision pathways:

Informative, easyto-read testing result reports

Report customization based on provider specialty

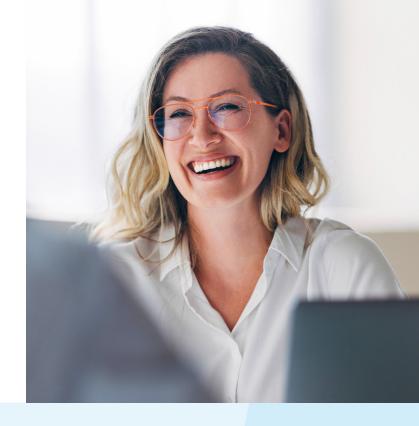
Direct linkage to relevant clinical guidelines

Automated family communication tools for cascade testing

The transformative potential of integrating genetic testing into women's care workflows remains vastly under-leveraged. By finding the right genetic testing lab provider, health systems can collaborate to help define and deliver a programmatic approach that works based on their system's unique circumstances.

We've seen the evidence: Embedding genetic screening more holistically into annual wellness visits, OB-GYN care pathways, or breast health initiatives allows systems to maximize existing touchpoints, reduce duplication, and elevate care quality without overextending resources.

Ultimately, integrating women's genetic testing isn't just a clinical, operational, or financial strategy — it's a leadership decision that reflects a deeper commitment to advancing women's health equity, value-based care, and community trust.


Integrating women's genetic testing...is a leadership decision that reflects a deeper commitment to advancing women's health equity, value-based care, and community trust.

Learn more about establishing a hereditary cancer risk assessment program in your health system

If your system is ready to make the move toward programmatic women's genetic testing, Myriad Genetics is ready to support you through a complimentary strategy session with genetic testing experts. This session could include:

- Reviewing your current approach to hereditary cancer risk assessment and genetic testing
- Identifying opportunities for improvement based on your specific needs
- Outlining potential solutions and implementation approaches, including pilot programs
- Sharing best practices for program success from similar health systems

Why Myriad?

In our 30+ years of genetic testing, we have worked with health systems throughout the country to support a higher standard of care as well as the higher level of integration that's required to deliver it.

We can apply our proven processes and protocols to your women's genetic testing program, regardless of where it stands today. You can start small with a pilot that suggests the best way to scale up. We've worked with dozens of systems to gather specialists, streamline patient payment details, help you develop your program workflow, implement it within your EMR, communicate it to patients, and provide ongoing training for your staff.

To find out more, visit www.myriad.com/womens-health/health-systems.

- 1. Guo F, Adekanmbi V, Hsu CD, et al. Cost-effectiveness of population-based multigene testing for breast and ovarian cancer prevention. JAMA Netw Open. 2024;7(2):e2356078. doi:10.1001/jamanetworkopen.2023.56078
- Zhang Y, Zhang J, Liu Y, et al. Breast Cancer Risk and Breast-Cancer-Specific Mortality following Risk-Reducing Salpingo-Oophorectomy in BRCA1 and BRCA2 Mutation Carriers: A Systematic Review and Meta-Analysis. Cancers. 2023;15(5):1625.
- Manchanda R, Patel S, Gordeev VS, et al. Cost-effectiveness of population-based BRCA testing with varying Ashkenazi Jewish ancestry. Am J Obstet Gynecol. 2017;217(5):578.e1-578.e12.
- Wang C, Lu H, Bowen DJ, Xuan Z. Implementing digital systems to facilitate genetic testing for hereditary cancer syndromes: An observational study of 4 clinical workflows. Genet Med. 2023;25(5):100802. doi:10.1016/j.gim.2023.100802
- Waldman, Richard N. MD; DeFrancesco, Mark S. MD; Feltz, John P. MD; Welling, Daniel S. MD; Neiman, Wade A. MD; Pearlstone, Melissa M. MD; Marraccini, Christine A. MD; Karanik, Dana RN; Neiman, Wade A. MD; Pearlstone, Melissa M. MD; Marraccini, Christine A. MD; Karanik, Dana RN; Neiman, Wade A. MD; Pearlstone, Melissa M. MD; Marraccini, Christine A. MD; Marraccin Mielcarski, Elaine CNM; Schneider, Logan MS; Lenz, Lauren MS; Smith, Edith C. DNP; Taber, Katherine Johansen PhD; Adkins, Royce T. MD, FACS. Online Screening and Virtual Patient Education for Hereditary Cancer Risk Assessment and Testing. Obstetrics & Gynecology 145(2):p 177-185, February 2025. doi: 10.1097/A0G.0000000000005799
- Wang C, Lu H, Bowen DJ, Xuan Z. Implementing digital systems to facilitate genetic testing for hereditary cancer syndromes: An observational study of 4 clinical workflows. Genet Med. 2023 6. May;25(5):100802. doi:10.1016/j.gim.2023.100802. Epub 2023 Feb 11. Accessed May 19, 2025. Available from: https://pubmed.ncbi.nlm.nih.gov/36906849/
- McGarvey N, Gitlin M, Fadli E, Chung KC. Increased healthcare costs by later stage cancer diagnosis. BMC Health Serv Res. 2022;22(1):1155. doi:10.1186/s12913-022-08457-6. https://pmc.ncbi. nlm.nih.gov/articles/PMC9469540/
- 8. McGarvey N, Gitlin M, Fadli E, Chung KC. Out-of-pocket cost by cancer stage at diagnosis in commercially insured patients in the United States. J Med Econ. 2023;26(1):1318-1329. doi:10.1080/136 96998.2023.2254649
- 9. Reddy SR, Broder MS, Chang E, Paydar C, Chung KC, Kansal AR. Cost of cancer management by stage at diagnosis among Medicare beneficiaries. Curr Med Res Opin. 2022;38(8):1285-1294. doi:10. 1080/03007995.2022.2047536
- Smith G, Lopez-Olivo M, Advani P, Ning MS, Geng Y, Giordano S, Volk R. Financial Burdens of Cancer Treatment: A Systematic Review of Risk Factors and Outcomes. J Natl Compr Canc Netw. 2019 Oct 1;17(10):1184-1192. doi: 10.6004/jnccn.2019.7305.
- PDQ® Adult Treatment Editorial Board. PDQ Financial Toxicity and Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated 05/29/2024. Available at: https://www.cancer.gov/about-cancer/managing-care/track-care-costs/financial-toxicity-hp-pdq. Accessed 07/08/2025. PMID: 27583328
- National Cancer Institute. SEER Cancer Stat Facts: Female Breast Cancer. Surveillance, Epidemiology, and End Results Program. Updated 2024. Accessed June 11, 2025. https://seer.cancer.gov/ statfacts/html/breast.html

Myriad.com / Myriad Genetics / 322 North 2200 West, Salt Lake City, UT 84116

©2025 Myriad Genetics, Inc. Myriad Genetics is a registered trademark of Myriad Genetics, Inc. and its subsidiaries in the United States and other jurisdictions. MGWHMRSAEB 0725